
A Performance Model of In-Situ Techniques
Yi Ju ∗, Nicolas Vidal∥, Adalberto Perez †, Ana Gainaru ∥, Fred Suter∥,
Stefano Markidis †, Philipp Schlatter †¶, Scott Klasky∥, Erwin Laure ∗
∗Max Planck Computing and Data Facility {yi.ju, erwin.laure}@mpcdf.mpg.de

†KTH Royal Institute of Technology {adperez, markidis, pschlatter}@kth.se
¶Friedrich-Alexander-Universität Erlangen-Nürnberg philipp.schlatter@fau.de
∥ Oak Ridge National Laboratory {vidaln, gainarua, suterf, klasky}@ornl.gov

Abstract—The computational capacity of High-Performance
Computing (HPC) systems increases continuously with the rapid
development of central processing units (CPUs) and graphic
processing units (GPUs), while the in-/output (IO) subsystem
develops relatively slowly and storage capacity is also limited.
Data-intensive applications, which are designed to leverage the
high computational capacity of HPC resources, typically generate
a considerable amount of data for post-processing visualizations
and data analytics. The limited IO speed and storage space could
lead to constraints in the actual performance of these applications
and, therefore, scientific discovery. In-situ techniques, where data
is visualized/analysed while still in memory rather than through
disk, can contribute to alleviating these problems as they can
reduce or even fully avoid data writing/reading through the IO
subsystem to/from storage. However, the overall efficiency of in-
situ techniques crucially depends on the characteristics of both
the in-situ tasks and the applications, and the resource distribu-
tion among them. Therefore, choosing the right in-situ approach
(synchronous, asynchronous, or hybrid) and resource allocation
is essential to minimize overhead and maximize the benefits of
concurrent execution. In this paper, we present a performance
model of in-situ techniques to find the most beneficial in-situ
approach and the preferred resource configuration. We verify
the high accuracy of our approach with over 6800 measurements
and provide use cases with different applications.

Index Terms—performance model, HPC, in-situ, CPU, GPU

I. INTRODUCTION

The peak performance of High-Performance Computing
(HPC) systems increases continuously with the rapid devel-
opment of central processing units (CPUs) and graphic pro-
cessing units (GPUs). Data-intensive research can benefit from
this fast development by leveraging the computational capacity
for large-scale simulation or data analytics. For instance, for
Computational Fluid Dynamics (CFD), HPC systems imple-
ment computationally expensive numerical methods to analyse
fluid flow problems. Molecular Dynamics (MD) is another
crucial research that uses the high computational power of
HPC systems to simulate and uses the results to describe
the physical movements of atoms and molecules. However,
the input/output (IO) subsystem is also developing relatively
slowly compared to the computational power. Conventionally,
the results generated by an application are stored via the IO
subsystem to the storage on the HPC systems, and data anal-
ysis applications read these data back via the IO subsystems
from storage. As storage space is usually restricted, this may
limit the frequency of storing the results for further analysis,
and the performance of the IO subsystem may limit the actual

Application In-situ task Data transfer

(b) Application with asynchronous in-situ task

(a) Application with synchronous in-situ task

(c) Application with hybrid in-situ task

Setup Main Final

Fig. 1: Illustration of applications with synchronous, asyn-
chronous, and hybrid in-situ tasks.

performance of the applications and, thus, scientific discovery.
In-situ techniques, where data is processed while still in mem-
ory rather than written to disk, can help to reduce or even avoid
data transfer through the IO subsystem to/from storage so they
can potentially solve these problems. In-situ techniques can be
categorized into three types based on whether executing the
in-situ task would interrupt the application. The synchronous
approach (Fig. 1a) pauses the application during the execution
of the in-situ task, which runs on the same resources as
the application and then continues to execute the application.
In the asynchronous approach (Fig. 1b), separate computing
resources are allocated to the application and the in-situ task,
and the application transfers the required data to the in-situ
task, allowing both to proceed concurrently. Lastly, in the
hybrid approach (Fig. 1c), part of the in-situ task is executed in
a synchronous manner, while the remaining parts are executed
on distinct computing resources in an asynchronous manner.

In-situ techniques can reduce the data traffic and allow
frequent in-situ visualization and analysis to be integrated into
both GPU-accelerated and CPU-based applications, but one
needs to know the behaviour of both, the application and in-
situ task to choose the most beneficial approach. [16], [17]
For CPU-based applications with computationally cheap in-
situ task(s), the synchronous approach is preferred; for CPU-
based applications with computationally expensive and poorly
scalable in-situ tasks, the asynchronous approach is preferred
as it allows different resource allocations tailored to the respec-
tive needs and scalability; for CPU-based applications with in-
situ tasks consisting of different parts with various frequencies
and computational cost, the hybrid approach is preferred; for
GPU-based applications, asynchronous and hybrid approaches
could significantly improve performance and optimize the

209

2025 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)

2377-5750/25/$31.00 ©2025 IEEE
DOI 10.1109/PDP66500.2025.00036



use of system resources by executing the in-situ task on the
(often) underutilized CPUs on GPU nodes. However, it is still
necessary to conduct experiments to explore the design and
configuration space to further quantify the most beneficial in-
situ approach and runtime configuration.

Performance models have valuable insights into parallel
applications. They can help to avoid laborious and expensive
experiments to analyze the application [20]. In this paper, we
develop a performance model of in-situ techniques, which
we use to select the most beneficial in-situ approach and
configuration. The paper’s specific contributions are:

1) performance models of synchronous, asynchronous, and
hybrid in-situ approaches derived from performance
models of the applications and the integrated in-situ task;

2) high accuracy of the performance model of in-situ
techniques verified with over 6800 experimental data;

3) a method to predict the preferred approach and runtime
configuration based on the performance models and the
example prediction in real-world use cases.

The remainder of the paper is organized as follows: Sec-
tion II contains a summary of related work on in-situ tech-
niques and performance models; Section III introduces the
performance models of in-situ techniques; Section IV presents
the experimental setups and accuracy of the performance mod-
els; Section V includes real use cases; and finally, Section VI
summarizes and discusses the results of this paper.

II. RELATED WORK

In-situ visualization is one of the most common in-situ tasks
and usually based on the Visualization Toolkit (VTK) data for-
mat [21], with tools like VisIt with Libsim [10], [18], ParaView
with Catalyst [4] and SENSEI [5]. As the name suggested,
VTK focuses mainly on visualization but might require a deep
copy. The Adaptable IO System (ADIOS/ADIOS2) [13], [19],
a higher-level IO abstraction, also provides functionalities for
in-situ processing. In addition to the VTK support, ADIOS/
ADIOS2 also supports various data formats, making it more
efficient for in-situ tasks other than visualization. Therefore,
we use the ADIOS2 library for our work.

Shu et al. [22] used performance models of in-situ work-
flows for autotuning but focused on asynchronous in-situ
approaches, only. On the contrary, our research also includes
synchronous and more complex hybrid in-situ approaches,
and our performance model of in-situ techniques can suggest
the preferred in-situ approach to decrease the development
cost for the in-situ workflow in addition to only predicting
the best runtime configuration. Gainaru et al. [11] used
the total cost in node hours to study the impact of data
staging in in-situ techniques. However, their study is only
based on theoretical performance models, which could not
represent the performance of real-world HPC applications and
in-situ tasks. Performance models that better depict real-world
cases include e.g.: PALM [23], which generates models by
requiring users to annotate the source code with performance
expressions; Jayakumar et al. [15] compare application kernels
with a database of kernels with known behaviour to classify

performance characteristics; Hoefler et al. [6] generate multi-
parameter performance models online, but only with restricted
search space and limited diversity of models.

Compared to the performance models mentioned above, we
use two general forms of performance models, introduced by
Calotoui et al. [8], [9] and developed by Ritter et al. [20]: A
Performance Model Normal Form (PMNF) is a performance
model with a single model parameter (Equation 1). It allows a
search space for the function representing the set of measure-
ments. The exponents ik and jk are chosen from the rational
number set I, J ⊂ Q. The number of terms, n, defines the
discrete model search space. From the previous studies, a sim-
ple selection for I and J to model an application is sufficient.
(e.g. n = 2, I = {0, 1/4, · · · , 3, }, J = {0, 1, 2}) [9].

f(x) =
∑n

k=1 ck · xik · logjk2 (x) (1)
A Normal Form for Multiple Parameters (NFMP), Equa-
tion 2, allows combining the influences of m parameters. It
is an expansion from PMNF, allowing the combination of a
number of m of parameters in each of the n terms that are
summed up to form the model. The exponents ikl

and jkl
,

respectively, can be defined the same as in PMNF. [8], [20]

f(x1, · · · , xm) =
∑n

k=1 ck ·
∏m

l=1 x
ikl

l · logjkl
2 (xl) (2)

III. METHODOLOGY

In this section, we explain how to derive the performance
models of in-situ approach from the separate performance
models of applications and in-situ tasks.

A. Applications’ and In-Situ Tasks’ Performance Models

We separate the execution of the application (g) and in-situ
task (ψ) into three phases: initialization, main, and finalization
phases. The performance models of execution time can then
be expressed with Equations 3. The frequency of performing
in-situ task is v; the total number of simulation steps is n.
The initialization phase (∗init) includes data distribution and
memory allocation. The main phase (∗main) consists of n
simulation steps, where each iteration often takes the same
time. Based on this assumption, the execution time of this
part is expressed as the sum of the execution time of n steps.
The last phase is the finalization phase (∗final), in which
the application performs the closing (e.g. freeing memory).
Compared to the main phase, the initialization and finalization
phases take a relatively short time.

g(x⃗) = ginit(x⃗) +
∑n

gmain(x⃗) + gfinal(x⃗)

ψ(x⃗) = ψinit(x⃗) +
∑n

v ψmain(x⃗) + ψfinal(x⃗)
(3)

The input variable x⃗ depends on the parameters necessary
for the performance model. If the performance model (PMNF)
only depends on one parameter, x⃗, is a scalar. If the per-
formance model (NFMP) depends on h parameters, x⃗ is a
h-dimensional vector. e.g., when both the numbers of CPUs
and of GPUs influence the performance of GPU-accelerated
applications, the input variable is a 2-dimensional vector.

210



Application In-situ task Data transfer

Phase I Phase II Phase III

Setup Main Final

Fig. 2: Illustration of phases of asynchronous in-situ technique.
B. In-Situ Techniques’ Performance Models

The performance model of the synchronous in-situ tech-
nique (φsync) can be expressed with Equation 4. The appli-
cation and in-situ tasks are executed by the same computing
resources, so only one set of parameters (x⃗) is sufficient.
The 1st line in Equation 4 shows the initialization of the
synchronous approach consisting of the initialization of the
application (ginit) and the in-situ task (ψinit); the 2nd line
shows the main phase represented by the sum of the n steps of
the simulation (gmain) and vn times the in-situ task (ψmain);
the 3rd line shows the finalization consisting of the finalization
of the application (gfinal) and the in-situ task (ψfinal).

φsync(x⃗) = ginit(x⃗) + ψinit(x⃗)

+
∑n(

gmain(x⃗) + v ψmain(x⃗)
)

+gfinal(x⃗) + ψfinal(x⃗)

(4)

Fig. 2 shows the three phases of the asynchronous in-situ
technique. Its performance model (φasync) can be expressed
with Equation 5. We need one parameter set (x⃗1) for the
application and the other set (x⃗2) for the asynchronous in-
situ task to represent the corresponding parameters influencing
their performance.
φasync(x⃗1, x⃗2) = max

(
ginit(x⃗1) +

1/v∑
gmain(x⃗1), ψinit(x⃗2)

)
+
∑n−1/v max

(
gmain(x⃗1), v ψmain(x⃗2)

)
+max

(
gfinal(x⃗1), ψmain(x⃗2) + ψfinal(x⃗2)

)
+
∑v×n

φcomm(x⃗1, x⃗2)
(5)

During the initialization phase (Phase I), the first group of
computing resources execute the initialization of the applica-
tion (ginit) and the first 1/v steps of the application’s main
phase (gmain), while the rest only execute the initialization of
the in-situ task (ψinit) (the 1st line of Equation 5). Often, in
this phase, the first 1/v steps of the application’s main phase
are dominant. During the main phase (Phase II) represented as
the 2nd line of Equation 5, the group of computing resources
execute (n − 1/v) steps of the application’s main phase
(gmain), while the rest concurrently execute the (vn−1) steps
of the in-situ task’s main phase (ψmain). The execution time
of this phase is equal to the longer one. During the finalization
phase (Phase III) represented as the 3nd line of Equation 5, the
first group of computing resources only execute the finalization
(gfinal), while the rest execute the last step of the in-situ task’s
main phase (ψmain) and the finalization (ψfinal). Typically,
the last step of the in-situ task’s main phase is dominant. In
addition to the execution time, we introduce v × n times of
communication between the application and the in-situ task
(the 4th line of Equation 5). The communication time, apart
from the size of the transferred data, is influenced by the num-
ber of resources for the application and the in-situ task, as this
will determine the communication pattern. For the application
on GPUs and in-situ tasks on CPUs, the communication also

Application In-situ task Data transfer

Phase I Phase II Phase III

Setup Main Final

Fig. 3: Illustration of phases of hybrid in-situ technique.
includes the additional data transfer between GPUs and CPUs.
Among these three phases, the Phase II would often take the
most of the total execution time because the in-situ techniques
enable frequent in-situ task execution along the long execution.
Therefore, this phase becomes the main optimization target
to achieve the optimal execution time and resource usage of
the asynchronous in-situ approach. When the total computing
resources are fixed, especially when the application and the
in-situ task are both executed on CPUs, the more computing
resources are assigned to the application, the fewer can be
assigned to the in-situ task. Thus, the execution time of the
in-situ task might increase when the execution time of the
application decreases. In this case, the optimal point would
appear when 1/v steps of the application’s main phase take
the same amount of time as the one step of the in-situ task’s
main phase. When we exploit underused CPUs on GPU nodes
where the application is mostly executed on GPUs, the best
performance would appear when 1/v steps of the application’s
main phase take the same time as or even less time than the
one step of the in-situ task. With this, we could predict the
number of CPUs required by the in-situ tasks.

For the hybrid in-situ technique, we divide the in-situ
task’s phase into two parts (ψ1 and ψ2). The first part would
be executed synchronously with frequency, v1 , and the second
part would be executed asynchronously with frequency v2 as
shown in Equation 6.

ψ(x⃗) =ψ1 init(x⃗) + ψ2 init(x⃗)

+
∑n

(
v1 ψ1 main(x⃗) + v2 ψ2 main(x⃗)

)
+ψ1 final(x⃗) + ψ2 final(x⃗)

(6)

Typically, the asynchronous part is executed less frequently
than the synchronous part. Fig. 3 shows three phases of the
simplest hybrid approach. Accordingly, the performance model
can be expressed with Equation 7. Similarly, we use two
sets of parameters, x⃗1 and x⃗2, to represent the corresponding
parameters influencing the performance.
φhybrid(x⃗1, x⃗2) = max

(
ginit(x⃗1) + ψ1 init(x⃗1)

+
∑1/v2

(
gmain(x⃗1) + v1 ψ1main(x⃗1)

)
, ψ2 init(x⃗2)

)
+
∑n−1/v2 max

(
gmain(x⃗1) + v1ψ1main(x⃗1), v2ψ2main(x⃗2)

)
+max

(
gfinal(x⃗1) + ψ1 final(x⃗1), ψ2 main(x⃗2) + ψ2 final(x⃗2)

)
+
∑v2×n

φcomm(x⃗1, x⃗2)
(7)

During the initialization phase (Phase I) (the 1st and 2nd

lines of Equation 7), the first part of computing resources
execute the initialization of the application (ginit) and syn-
chronous part of the in-situ task (ψ1 init), the first 1/v2 steps
of the application’s main phase (gmain), and the first v1/v2
steps of the in-situ task’s synchronous main phase (ψ1 main)
(often dominant), while the rest only execute the initialization
of the in-situ task (ψ2 init). During the main phase (Phase
II) (the 3rd line of Equation 7), the first part of computing

211



Application In-situ task Data transfer

Phase I Phase II Phase III

Setup Main Final

Fig. 4: Illustration of phases of hybrid in-situ technique with
three parts.
resources execute (n − 1/v2) steps of the application’s main
phase (gmain) and (v1n − v1/v2) steps of the in-situ task’s
synchronous main phase (ψ1 main), while the rest concurrently
execute the (v2n− 1) steps of the in-situ task’s asynchronous
main phase (ψ2 main). During the finalization phase (Phase
III) represented as the 4th line of Equation 7, the first part
of computing resources only execute the finalizations (gfinal
and ψ1 final), while the rest execute the last step of the in-situ
task’s asynchronous main phase (ψ2 main) and the finalization
(ψ2 final) (often dominant). In addition to the execution, we
also introduce v2n times extra communication between the
in-situ task’s synchronous and asynchronous parts, including
GPU-CPU data exchange (the 5th line of Equation 7). Similar
to the asynchronous approach, among these three phases of the
hybrid approach, the main phase (Phase II) typically consumes
the majority of the total execution time. As a result, optimizing
this phase becomes paramount to achieving optimal execution
time and resource utilization with the hybrid in-situ approach.

We use Equation 8 to generalize the performance model
of the in-situ task. The in-situ task are separated into m
parts (ψk). The kth part of the in-situ task can be executed
with frequency vk synchronously or asynchronously.
ψ(x⃗) =

∑m
k=1 ψk init(x⃗)

+
∑m

k=1

∑n
vk ψk main(x⃗) +

∑m
k=1 ψk final(x⃗)

(8)

Fig. 4 illustrates one in-situ task with three parts with differ-
ent frequencies integrated. One part is executed synchronously,
and the other two asynchronously. We summarize the perfor-
mance model of the in-situ technique with Equation 9. We
separated the computational resources into λ+ 1 groups: one
group for the application and ms synchronous parts of the
in-situ task, and λ groups for asynchronous parts. The lth

resources (l ∈ {1, · · · , λ}) can be represented with x⃗al
, and

the numbers of asynchronous parts of in-situ tasks executed
on the corresponding resources are m1.
φ(x⃗s,x⃗a1

, · · · , x⃗aλ
) = φinit(x⃗s, x⃗a1

, · · · , x⃗aλ
)

+
∑n−1/vmin max

(
gmain(x⃗s) +

∑ms

k=1 vk ψk main(x⃗s),∑m1

k=1 vkψk main(x⃗a1), · · · ,
∑mλ

k=1 vkψk main(x⃗aλ
)
)

+φfinal(x⃗s, x⃗a1 , · · · , x⃗aλ
)

+
∑λ

l=1

∑mλ

k=1

∑vk×n
φcomm(x⃗s, x⃗al

)
(9)

The relation between the numbers of in-situ task parts in
Equation 8 and Equation 9 should be m = ms+

∑λ
l=1ml For

the asynchronous parts of the in-situ task, the separate comput-
ing resources have to wait for the application to generate the
necessary data. The last steps of in-situ tasks cannot overlap
with the application. However, these initialization (φinit on
the 1st line and finalization φfinal on the 4th line of Equa-
tion 9) are often neglectable compared to the total execution

time. It is beneficial to optimize the runtime configuration
to improve the main phase (Phase II in Fig. 4), where all
the computing resources for the asynchronous part of in-situ
tasks receive the data. The main phase (the 2nd and 3rd lines
of Equation 9) is calculated by summing up the maximal
execution time among all ml asynchronous parts of in-situ task
(
∑ml

k=1 vk ψk main(x⃗s)) executed on the lth computing re-
sources and the sum of the application (gmain) and all ms syn-
chronous part(s) of in-situ task (

∑ms

k=1 vk ψk main(x⃗s)). For
the sake of simplicity, we do not consider the asynchronous
parts of in-situ tasks to communicate with each other, so the
communication in this performance model can be expressed
as the sum of all the communication between the application
and asynchronous part(s) of in-situ task or the communication
between the synchronous part(s) and asynchronous part(s) of
in-situ task (the last line of Equation 9).

IV. EVALUATION

We evaluate our performance models with three simulation
codes and three typical in-situ tasks.

A. Experimental setups

The used applications are: 1. Nek5000 is a spectral element
method (SEM) based CFD code with excellent scalability. [1]
2. NEKO is a successive portable framework of Nek5000,
allowing simulation on GPUs and CPUs. [14] 3. Quantum-
Espresso (QE) can perform Car-Parrinello MD simulation for
complex electronic interactions in large molecules. [12] The
integrated in-situ tasks are: 1. Image generation with Par-
aview/Catalyst [4] is one of the most common in-situ tasks. 2.
Physics-based lossy data compression systematically discards
data in CFD with low energy spectral coefficients. [17] 3.
General lossless data compression is widely used and already
offered e.g. as operators in ADIOS2.

In the asynchronous and hybrid in-situ approaches, we
use ADIOS2 to communicate the data. Resource allocation
is specified in run time configurations. We use Extra-P [7]
to construct the performance models. We used five data
points to generate the PMNF of the applications and in-situ
tasks. [7] We used the cost-effective sampling strategy [20]
to generate NFMP for the applications and in-situ tasks with
multiple parameters influencing the performance. Assuming
that h parameters would influence the performance, we need
(6h − 1) data points. Then we evaluated the accuracy of the
performance model of in-situ technique with the coefficient
of determination (R2) [7]. It is calculated from the predicted
performance and the measured performance with Equation 10,
where yi is the measured performance, ȳ is the average of the
measured performance, and φi is the performance predicted
by the performance models. The number of samples used for
the accuracy evaluation (z) is much larger than the number of
samples used to generate the performance models.

R2 = 1−
∑z

i (yi − φi)
2∑z

i (yi − ȳ)2

(
ȳ =

1

z

∑z
i=1 yi

)
(10)

All experiments were performed on the Raven [3] super-
computer at the Max Planck Computing and Data Facility

212



TABLE I: Performance models of application
Application Parameter(s) Performance model of one step in the main part R2

NEKO (CPU) r number of ranks 7.4203× 10−3 + 29.0435 r−1 0.991

NEKO (GPU) g number of GPUs
r number of ranks 2.6042× 10−2 + 1.78424 g−1 0.960

Nek5000 (CPU) r number of ranks 6.4× 10−3 + 2.7110× 103 r−1 0.995

QE (CPU) r number of ranks
t number of threads per rank 2.5930× 102 − 32.7340 log2 r − 5.9391× 10−1 log2 t 0.967

QE (GPU)
g number of GPUs
r number of ranks
t number of threads per rank

30.705 + 1.3981
√

log2 g log2 r
√

log2 t− 2.8021 log2 r
√

log2 t

−13.7530
√

log2 g
0.950

TABLE II: Performance models of in-situ task
In-Situ Task Parameter(s) Performance model of one step in the main part R2

Lossy data compression
for 323 NEKO fluid elements r number of ranks O(r) (insignificant)

Lossless data compression
for 323 NEKO fluid elements r number of ranks O(r) (insignificant)

Lossy data compression
for 643 NEKO fluid elements

g number of GPUs
r number of ranks 2.5573× 10−3 + 2.4793× 10−2 g−1 + 0.86584 r−1 0.941

Lossless data compression
for 643 NEKO fluid elements r number of ranks 0.1384 + 55.3399 r−1 0.999

Image generation
for 323 NEKO fluid elements r number of ranks 1.0148 + 2.1720 r−1 0.992

Image generation
for 643 NEKO fluid elements r number of ranks 0.3934 + 15.0021 r−1 0.985

Lossy data compression
for Nek5000 fluid elements r number of ranks O(r) (insignificant)

Lossless data compression
for Nek5000 fluid elements r number of ranks O(r) (insignificant)

Image generation
for Nek5000 fluid elements r number of ranks 3.8060 + 8.2481r−0.5 0.999

Data compression
for wave function coefficients r number of ranks −11.605 + 205.01318r−0.8 0.804

(MPCDF). One CPU node contains two Intel Xeon IceLake-
SP 8360Y processors, each with 36 cores and 256 GB RAM.
One GPU compute node has four Nvidia A100 GPUs (4×40
GB HBM2 memory per node and NVLink) and two Intel
Xeon CPUs with 512 GB RAM. The GPU-accelerated nodes
use Nvidia Multi-Process Service (MPS) [2] to allow multiple
CPU cores to share access to the same GPU and to use the
GPUs more efficiently, and we allocate cores for the original
application and in-situ tasks evenly on two CPUs.

B. Accuracy of the performance models

Performance models of applications are shown in Table I.
All of them have good accuracy (R2 ≈ 1). The CPU-based
NEKO and Nek5000 (the 1st and 3rd rows in Table I) are
the applications executed only by CPUs with MPI support, so
only the number of ranks would influence the performance.
For the GPU-accelerated NEKO (the 2nd row in Table I), both
the numbers of GPUs and of MPI ranks should influence the
performance. For GPU-accelerated NEKO, MPS only brings a
slight performance benefit, so the performance model becomes
one PMNF, although we provide eleven data points. The 4th

row in Table I shows the CPU-based QE and the numbers
of MPI ranks and of thread(s) per MPI rank would influence
the performance because of its openMP and MPI support; the
5th row in Table I shows the GPU-accelerated QE and the
numbers of GPUs, of MPI ranks and thread(s) per MPI rank
would all influence the performance.

Most of Performance models of in-situ tasks (Table II) have
good accuracy (R2 ≈ 1). We separated the data compression
integrated into Nek5000 and NEKO into two parts and tested

the performance model of these two parts separately. . The
first part is the lossy compression, which reuses functions and
parameters from the simulation, i.e., it is deeply coupled with
the simulation, and, therefore, always synchronous. The data
compression integrated into CPU-based NEKO, and Nek5000
(the 1st, 2nd, 7th and 8th rows in Table II) take only an
insignificant amount of time, so we notated the infinitesimal
asymptotic in the performance models with a single big O tern
(O(x⃗)). For GPU-accelerated NEKO, the data compression
is no longer insignificant (the 3rd and 4th rows in Table II)
because the NEKO is fast on GPUs. The performance models
of image generation (the 5th, 6th, and 9th rows in Table II)
do not include the problem size, so we have one performance
model for each case.

Performance models of communication with ADIOS2 (Ta-
ble III) are also accurate. The bandwidth of the communication
between the cores on the same node is higher than between
cores on different nodes. The 1st row in Table III shows that
the bandwidth within one node increases with the number of
cores to send data, the number of cores to receive data, and the
size of the data transferred. For the communication between
nodes (the 2nd row in Table III), when the message size is not
large enough, the communication cannot take full advantage of
the hardware network bandwidth. We also observe an increase
in bandwidth with the message size. However, we cannot
saturate the bandwidth of the hardware network bandwidth
within one node, which is much larger than the bandwidth
between nodes. So users should allocate part of the cores on
each node to the application, while the rest to in-situ tasks to
ensure data communication within the node. Compared to the

213



TABLE III: Performance models of communication
Communication Parameter(s) Performance models of communication R2

“InsituMPI” on the same node
w number of writer ranks
r number of reader ranks
s message size

s/(0.2181 + 0.03678 log2 w log2 r log2 s
+0.4795 log2 w + 0.048928 log2 s)

0.974

“InsituMPI” between nodes
w number of writer ranks
r number of reader ranks
s message size

s/0.1506 0.847

TABLE IV: Performance models of in-situ techniques
Application In-Situ Task Execution Synchronous Asynchronous Hybrid

Name R2 Name R2 # of
nodes

Time
range

# of
tests R2 # of

tests R2 # of
tests R2

NEKO (CPU) 0.991 Data compression 1-8 100-800s 80 0.999 No tests 480 0.990
NEKO (CPU) 0.991 Image generation 0.992 1-8 400-2500s 80 0.999 480 0.998 No tests
NEKO (GPU) 0.960 Data compression 0.941 2-8 300-3300s 250 0.984 No tests 1250 0.953
NEKO (GPU) 0.960 Image generation 0.985 2-8 200-3800s 250 0.995 1250 0.948 No tests
Nek5000(CPU) 0.991 Data compression 12-28 1500-3500s 80 0.998 No tests 250 0.999
Nek5000(CPU) 0.991 Image generation 0.999 12-28 2000-5500s 80 0.999 250 0.994 No Test
QE (CPU) 0.967 Data compression 0.804 1-5 250-4500s 450 0.978 600 0.977 No Test
QE (GPU) 0.950 Data compression 0.804 1-5 150-800s 450 0.910 600 0.844 No Test

communication between ranks, the data transfer between CPU
and GPU is insignificant, so we also denote it with O(x⃗).

All the R2 reported in Table. I to Table. III are offered by
Extra-P. We derived the Performance models of in-situ tech-
niques from the performance models of the application and the
in-situ task according to the in-situ technique it used. Then,
we evaluated the performance with R2 using Equation 10.
The number of nodes used for each execution, the execution
time range, and the number of tests to evaluate the accuracy
of the performance are listed together with the accuracy in
Table IV. In general, the accuracy of the performance models
depends on the accuracy of the application’s and in-situ task’s
performance models and the workload difference between the
application and the in-situ task. For instance, the last row of
Table IV shows that the R2 of lossless compression on QE data
is only 0.804. For the CPU-based QE, data compression takes
only neglectable time compared to the total execution time;
for the GPU-accelerated QE, the simulation time of QE is on
the same exponential level as data compression time. So, low
accuracy of data compression has less influence on the derived
performance models than GPU-accelerated QE. The 1st - 6th

rows in Table IV show the Nek5000 and NEKO with in-situ
tasks, and the accuracies of their performance models are, in
general, high. The performance models of GPU-accelerated
NEKO with in-situ tasks (the 3rd and 4th rows in Table IV)
have slightly lower accuracies compared to CPU-based NEKO
(the 1st and 2nd rows in Table IV) because the accuracy of its
performance is slighter lower. The data compression integrated
into Nek5000 and CPU-based NEKO (the 1st, 3rd, and 5th

rows in Table IV) has an insignificant influence on the total
execution time so we notated the performance models with a
single big O tern and calculated it as a zero tern in evaluation.
This does not decrease the accuracies of the performance
models. Because different applications have different numbers
of parameters influencing performance and allow different
runtime configurations, the number of samples used for the
accuracy evaluation of each application varies.

V. USE CASES

In this section, we provide two use cases of the performance
model to predict the performance and preferred configuration

Fig. 5: Predicted and measured best performance and efficien-
cies of GPU-accelerated QE with compression using four cores
per MPI rank, three ranks per GPU and four GPUs for QE.
to illustrate its potential integration into the production plat-
form. We first use the cost-effective sampling strategy [20] to
decide on the data points to measure, generate the performance
model, and finally use it for prediction.

A. GPU-accelerated QE with lossless data compression

In this use case, we predict the preferred in-situ approach
for the GPU-accelerated QE with lossless data compression
every ten simulation steps. We use Extra-P to generate the
performance models of the GPU-accelerated QE, data com-
pression, and communication. As the case is rather small, we
execute it on one GPU node (four GPUs in total). As QE has
both Massage Passing Interface (MPI) and OpenMP (allowing
multiple CPU cores per MPI rank) support, for each GPU, a
different number of CPU cores per MPI rank and a different
number of MPI ranks for the CPU-parts of QE can be chosen.
Our experiments showed the best performance with four cores
per MPI rank and three ranks per GPU.

With this setup (four cores per MPI rank and three ranks
per GPU) our model suggests to use the asynchronous in-
situ method for lossless compression. Our model predicts
that by using eight cores for the lossless compression, we
get the best efficiency, as with this setup the time spent in
lossless compression is about the same as the time of the
simulation steps and the synchronous lossy compression - thus
we achieve a good asynchronous overlap with good resource

214



Nek5000 Image Data transfer Setup Main Final
Generation

CompOrigin Image
Generation

# of groupresource

1

2

3

4

a)

b) c)

d) e)

f) g)

Fig. 6: Illustration of image generation from original and compressed Nek5000 data.

(a) The predicted and measured best performances. (b) The predicted and measured best configurations (how
many CPU cores are being allocated to the simulation and
the different asynchronous resource groups).

Fig. 7: The predicted and measured best performances of approaches a to g and their configurations.
usage. All components (simulation, lossy compression, and
lossless compression) show a parallel efficiency of over 80%.

Fig. 5 shows the predicted and measured performance
and efficiencies of our use case, both in an asynchronous
and synchronous manner. Our model correctly predicted the
asynchronous manner to outperform the synchronous.

B. Image generation from original and compressed CFD data

In our second use case, we used our performance model
to predict the best configuration for a more complex case: we
generate images from CFD simulation data using Nek5000 be-
fore and after lossy compression, which can then be used, e.g.
for visual comparison. We compress data every second simu-
lation step and generate an image from this lossy-compressed
data. Every fourth simulation step we also generate an image
from the original data. Such a setup can, e.g. be useful if a
movie should be made out of the images from the compressed
data and less frequent quality checks are performed.

We decompose the in-situ task in our stress test into three
parts: lossy data compression and image generation every
second simulation step, and image generation from original
data every fourth simulation step. The lossy data compression
reused the functions from the simulation, so it was performed

synchronously. Without in-situ techniques, such an experiment
would generate over 130 TB of data for post-processing.

Fig. 6 shows the possible in-situ approaches, with up to
three different resource groups for the asynchronous in-situ
method where all sets share the same node. When one part
of the in-situ task is executed asynchronously, one or two
group(s) of resources are used; when one part is executed
synchronously, it is executed by the same resources as the
simulation. When we test g resource groups for the asyn-
chronous in-situ method, 5g configurations are tested. For
instance, in approach b, we test 2,4,12,18,36 cores per node
for asynchronous image generation from compressed data.

Fig. 7 shows the best performing execution times (Fig. 7a)
and configurations (Fig. 7b) for each of these approaches. We
report the average of five test runs in Fig. 7a, and all the
configurations of the best runs are the same and illustrated in
Fig. 7b. As can be seen, the predicted and actual execution
times are very close, and also the resource configurations are
very similar. The overall best performance can be achieved
through approach f), with two groups of 48 CPU cores (two
cores per node) for image generation from compressed data
and one group of 48 CPU cores for image generation from
original data having the best performance.

215



VI. CONCLUSION AND DISCUSSION

In this paper, we developed a performance model for syn-
chronous, asynchronous, and hybrid in-situ approaches using
the performance models of the applications and integrated in-
situ tasks. We performed systematic performance measure-
ments of three different codes executing both, on CPUs and
GPUs: Nek5000 and NEKO (CFD simulations) and QE (MD
simulations) with common in-situ tasks: lossy and lossless data
compression as well as image generation. We used over 6800
experiments to verify the accuracy of our performance model,
which showed a good agreement with the experiments. We also
provided two real-world use cases to demonstrate how to use
the performance models to predict the best performance and
corresponding runtime configurations of the different in-situ
approaches and to propose the preferred in-situ technique. This
helps to reduce the development and experimental efforts of
integrating in-situ tasks into large-scale applications. Thanks to
our performance models, we could also identify the potential
for further optimization to achieve a better usage of the
computational resources. With the general performance model
of in-situ techniques (Equation 9), we can also predict the
performance of more complex in-situ workflow and suggest
the best resource allocation.

In future work, we will design a system for automatic
performance model generation and also include more perfor-
mance metrics in addition to execution time to identify under-
used resources to provide further suggestions to developers.
We will also use our performance models in malleable in-situ
approaches. This will allow to add resources for in-situ tasks
dynamically during runtime and help with resource under-
utilization of static resource assignments in cases where e.g.
the in-situ tasks only start after a significant runtime of the
simulation (e.g. long startup/stabilization phase).

ACKNOWLEDGMENT

The authors gratefully acknowledge the EuroHPC Joint Un-
dertaking (JU) (956748 ”ADMIRE” and 101083261 “Plasma-
PEPSC”) for funding support. The authors would appreciate
the Max Planck Computing and Data Facility (MPCDF) for
providing compute time on the Raven Supercomputer.

REFERENCES

[1] Nek5000, a fast and scalable high-order solver for computational fluid
dynamics. [Online]. Available: https://nek5000.mcs.anl.gov/

[2] Nvidia nsight systems. [Online]. Available:
http://docs.nvidia.com/deploy/mps/index.html

[3] Supercomputer Raven at Max Plank Computing and Data Facility. [On-
line]. Available: https://www.mpcdf.mpg.de/services/supercomputing/
raven

[4] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “Paraview catalyst: Enabling in situ data analysis
and visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
2015, pp. 25–29.

[5] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie,
and E. W. Bethel, “The sensei generic in situ interface,” in 2016 Second
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV). IEEE, 2016, pp. 40–44.

[6] A. Bhattacharyya, G. Kwasniewski, and T. Hoefler, “Using compiler
techniques to improve automatic performance modeling,” in 2015 Inter-
national Conference on Parallel Architecture and Compilation (PACT).
IEEE, 2015, pp. 468–479.

[7] S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt,
A. Knüpfer, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, C. Rössel,
P. Saviankou, D. Schmidl, S. Shende, W. M, B. Wesarg, and F. Wolf,
“Score-p: A unified performance measurement system for petascale
applications.” in HPC Status Konferenz der Gauß-Allianz e.V., Schwet-
zingen. Springer, 2011.

[8] A. Calotoiu, D. Beckinsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz,
and F. Wolf, “Fast multi-parameter performance modeling,” in 2016
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2016, pp. 172–181.

[9] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[10] H. Childs, “Visit: An end-user tool for visualizing and analyzing very
large data,” 2012.

[11] A. Gainaru, L. Wan, R. Wang, E. Suchyta, J. Chen, N. Podhorszki,
J. Kress, D. Pugmire, and S. Klasky, “Understanding the impact of data
staging for coupled scientific workflows,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 12, pp. 4134–4147, 2022.

[12] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., “Quantum
espresso: a modular and open-source software project for quantum
simulations of materials,” Journal of physics: Condensed matter, vol. 21,
no. 39, p. 395502, 2009.

[13] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “Adios 2: The
adaptable input output system. a framework for high-performance data
management,” SoftwareX, vol. 12, p. 100561, 2020.

[14] N. Jansson, M. Karp, A. Podobas, S. Markidis, and P. Schlatter,
“Neko: A modern, portable, and scalable framework for high-fidelity
computational fluid dynamics,” arXiv preprint arXiv:2107.01243, 2021.

[15] A. Jayakumar, P. Murali, and S. Vadhiyar, “Matching application signa-
tures for performance predictions using a single execution,” in 2015
IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2015, pp. 1161–1170.

[16] Y. Ju, M. Li, A. Perez, L. Bellentani, N. Jansson, S. Markidis, P. Schlat-
ter, and E. Laure, “In-situ techniques on gpu-accelerated data-intensive
applications,” in 2023 IEEE 19th International Conference on e-Science
(e-Science). IEEE, 2023, pp. 1–10.

[17] Y. Ju, A. Perez, S. Markidis, P. Schlatter, and E. Laure, “Understanding
the impact of synchronous, asynchronous, and hybrid in-situ techniques
in computational fluid dynamics applications,” in 2022 IEEE 18th
International Conference on e-Science (e-Science). IEEE, 2022, pp.
295–305.

[18] T. Kuhlen, R. Pajarola, and K. Zhou, “Parallel in situ coupling of simu-
lation with a fully featured visualization system,” in Proceedings of the
11th Eurographics Conference on Parallel Graphics and Visualization
(EGPGV), vol. 10. Eurographics Association Aire-la-Ville, Switzerland,
2011, pp. 101–109.

[19] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield et al., “Hello adios: the
challenges and lessons of developing leadership class i/o frameworks,”
Concurrency and Computation: Practice and Experience, vol. 26, no. 7,
pp. 1453–1473, 2014.

[20] M. Ritter, A. Calotoiu, S. Rinke, T. Reimann, T. Hoefler, and F. Wolf,
“Learning cost-effective sampling strategies for empirical performance
modeling,” in 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE, 2020, pp. 884–895.

[21] W. Schroeder, K. M. Martin, and W. E. Lorensen, The visualization
toolkit an object-oriented approach to 3D graphics. Prentice-Hall,
Inc., 1998.

[22] T. Shu, Y. Guo, J. Wozniak, X. Ding, I. Foster, and T. Kurc, “Bootstrap-
ping in-situ workflow auto-tuning via combining performance models of
component applications,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–15.

[23] N. R. Tallent and A. Hoisie, “Palm: Easing the burden of analytical
performance modeling,” in Proceedings of the 28th ACM international
conference on Supercomputing, 2014, pp. 221–230.

216


