
The State of MPI
Current Standard and Future Plans

Martin Schulz
Chair for Computer Architecture and Parallel Systems
Technical University of Munich

Plasma-PEPSC Seminar
The State of MPI - Seminar Plasma-PEPSC



Where Are We?

MPI 4.0 was published 2.5 years ago
(in the middle of Corona)
- Solution for “Big Count” operations
- Partitioned Communication
- Persistent Collectives
- Improved Error Handling
- Topology Solutions
- New init options via MPI Sessions
- And much more …

The State of MPI - Seminar Plasma-PEPSC



The “Embiggenment“ 

The State of MPI - Seminar Plasma-PEPSC



Big Count aka. Embiggenment

Problem: in previous interface “count” arguments are “int”
• Limits communication volumes to 32bit x Datatype
• Significant number of applications need more
• Initial datatype “trick” no longer sufficient

Solutions discussed included:
• Just changing “int” arguments to “MPI_Count” arguments à L L L
• Polymorphic bindings à L L
• Duplication of interfaces: with int and with MPI_Count (“_c” suffix) à L

Last option was selected
• Update of the general type rules for bindings
• Verification of all bindings, which led to errata tickets
• Addition of many new routines with “_c”

The State of MPI - Seminar Plasma-PEPSC



Example: MPI_Recv Language Independent 
Binding

MPI 3.1
Version

BigCount
Version

The State of MPI - Seminar Plasma-PEPSC



Big Count = Big Task

The State of MPI - Seminar Plasma-PEPSC



„Pythonization“

All bindings are generated via embedded 
Python

• Initially introduced as in a neutral way
• Vetted by all WGs
• Then used for BigCount „flipped a switch“

Consequences
• Slightly different rendering
• More consistency
• Uncovered errors

New opportunities
• API / Query mechansism is being developed
• Machine readable description of all MPI routines
• Automatic extraction of the interface
• Eases future standard-wide changes
• Enables better tool support (e.g., generation of PMPI tools)

\begin{mpi-binding}
function_name("MPI_Send")

parameter(
"buf", "BUFFER", desc="initial address of
send buffer", constant=True)

parameter(
"count",
"XFER_NUM_ELEM_NNI_SMALL",
desc="number of elements in send buffer",)

parameter(
"datatype", "DATATYPE", desc="datatype of
each send buffer element)

parameter("dest", "RANK", desc="rank of
destination")

parameter("tag", "TAG", desc="message tag")
parameter("comm", "COMMUNICATOR")

\end{mpi-binding}

The State of MPI - Seminar Plasma-PEPSC



Partitioned Communication

The State of MPI - Seminar Plasma-PEPSC



Partitioned Communication

Core idea – efficient highly concurrent communication
• Built on the concept of persistent P2P communication
• Send and receive buffers are split into (possibly different) partitions

• Fill each partition and mark it as ready
• Individual notifications for each arriving partition

Notifications - on send and receive side – are light-weight
• May be driven from light weight environments, without entire MPI stack
• May need additional synchronization to trigger message transfer safely

The State of MPI - Seminar Plasma-PEPSC



Partitioned Communication for Thread Support

Heavy weight MPI communication outside of parallel region
• Inside only light-weight triggering (easier thread safety)
• Partition for each thread
• Each thread signals when it is ready
• MPI can optimize for latency or bandwidth (or shift)

The State of MPI - Seminar Plasma-PEPSC

MPI_Psend_init(..., &request);
for (...) {

MPI_Start(&request);
#pragma omp parallel
{

kernel(..., request);
}
MPI_Wait(&request);

}
MPI_Request_free(&request);

Thread:

kernel(..., MPI_Request request) 
{

int i = my_partition[my_id];
/* Compute and fill partition i then mark ready: */
MPI_Pready(i, request);

}



Persistent Collectives

The State of MPI - Seminar Plasma-PEPSC



Persistent Collective Operations

Use-case: a collective operation is done many times in an application
• The specific sends and receives represented never change (size, type, lengths, transfers)
• Opportunities

• Fixed cost for making optimizations can be amortized
• Static resource allocation can be done
• Special limited hardware can be allocated if available

Basics
• Mirror regular nonblocking collective operations
• For each nonblocking MPI collective, MPI now has a persistent variant
• For every MPI_I<coll>, add MPI_<coll>_init
• Parameters are identical to the corresponding nonblocking variant

• Plus additional MPI_INFO parameter
• All arguments “fixed” for subsequent uses
• Persistent collective operations cannot be matched with other collective calls

The State of MPI - Seminar Plasma-PEPSC



Example
for (i = 0; i < MAXITER; i++) {

compute(bufA);

MPI_Ibcast(bufA, …, rowcomm, &req[0]);

compute(bufB);

MPI_Ireduce(bufB, …, colcomm, &req[1]);

MPI_Waitall(2, req, …);

}

MPI_Bcast_init(bufA, …, rowcomm, &req[0]);

MPI_Reduce_init(bufB, …, colcomm, &req[1]);

for (i = 0; i < MAXITER; i++) {

compute(bufA);

MPI_Start(req[0]);

compute(bufB);

MPI_Start(req[1]);

MPI_Waitall(2, req, …);
}

Nonblocking collectives API

Persistent collectives API

The State of MPI - Seminar Plasma-PEPSC



Better Error Handling

The State of MPI - Seminar Plasma-PEPSC



Improved Error Handling

Goal: allow applications to limit impact of failures to avoid terminations
• Specify that MPI_SUCCESS indicates only the result of the operation, 

not the state of the MPI library.
• Localize error impact of some MPI operations.

MPI_ALLOC_MEM will now raise an error on COMM_SELF, not COMM_WORLD
• Specify that MPI should avoid fatal errors when the user doesn’t use 

MPI_ERRORS_ARE_FATAL
• New MPI Error Handler - MPI_ERRORS_ABORT
• Allow the user to specify the default error handler at mpiexec time.

What can you do with this?
• Point to Point communication with sockets-like error handling
• Enables master/worker and other non-traditional types of applications
• Enterprise applications that want to move from sockets to MPI can do so.

BUT: Not full fault tolerance for MPI!

The State of MPI - Seminar Plasma-PEPSC



Topology Solutions

The State of MPI - Seminar Plasma-PEPSC



New Ways to Adapt to Topologies

New systems are very hierarchical
• On node and whole system
• Application mapping is critcal
• Need topology-aware communicators

Guided Mode
• MPI_COMM_SPLIT_TYPE
• Special split type with info key to specify level

Unguided Mode
• Start at MPI_COMM_WORLD
• Step-wise go to lower levels until leaf is reached

The State of MPI - Seminar Plasma-PEPSC

P4

P7

P0

Core 2 Core 3Core 1Core 0

P8 P9 P10 P11

CPU 0 CPU 1

NUMANode 0

CPU 2 CPU 3

NUMANode 1 

Rack 1

Core 4 Core 5 Core 6 Core 7

Core 2 Core 3

P3P2P1

Core 1

hwcomm[1]

hwcomm[2]

hwcomm[3]

P5

Core 5Core 4 Core 6 Core 7

split #1

split #2

split #3

NUMANode 0

CPU 0 CPU 1

CPU 2

NUMANode 1

Rack 0

CPU 3

MPI_COMM_NULL

MPI_COMM_WORLD (hwcomm[0])

MPI_COMM_NULL

hwcomm[4]

Core 0

split #5

P6

split #4

and 7)to 5) to 11)
(Proc 6(Proc 0 (Proc 8

Rack #0 Rack #1

Graphics/Example from Guillaume Mercier, INRIA



Example

MPI_Init(…);

MPI_Comm_rank(MPI_COMM_WOLRD, &rank);

The State of MPI - Seminar Plasma-PEPSC

MPI_COMM_WORLD

Graphics/Example from Guillaume Mercier, INRIA



Example

MPI_Init(…);

MPI_Comm_rank(MPI_COMM_WOLRD, &rank);

MPI_Comm_split_type(MPI_COMM_WORLD,
MPI_COMM_TYPE_HW_UNGUIDED,
rank,info,&hwcomm_1);

The State of MPI - Seminar Plasma-PEPSC

MPI_COMM_WORLD
hwcomm_1

MPI_COMM_WORLD

hwcomm_1

Graphics/Example from Guillaume Mercier, INRIA



Example

MPI_Init(…);

MPI_Comm_rank(MPI_COMM_WOLRD, &rank);

MPI_Comm_split_type(MPI_COMM_WORLD,
MPI_COMM_TYPE_HW_UNGUIDED,
rank,info,&hwcomm_1);

MPI_Comm_split_type(hwcomm_1,
MPI_COMM_TYPE_HW_UNGUIDED,
rank,info,&hwcomm_2);

The State of MPI - Seminar Plasma-PEPSC

MPI_COMM_WORLD

hwcomm_2 hwcomm_2

hwcomm_2 hwcomm_2

Graphics/Example from Guillaume Mercier, INRIA



MPI Sessions

The State of MPI - Seminar Plasma-PEPSC



MPI Sessions 

Attacking some fundamental problems in MPI
• MPI_COMM_WORLD is a very static resource
- Minimized the complexity

• MPI_COMM_WORLD is immutable
- Avoids many issues and reduces overhead (and made it not PVM J )

• MPI has no ability to isolate resources
- This was not necessary in the past, very little to isolate

• MPI has no ability to “talk” to the runtime system
- Explicit choice to improve portability, separation of concerns and matched HPC setups

• MPI is seen as not supporting new communities and industrial applications
- HPC was the initial target and is still the main area

Question: How can we overcome this, without compromising MPI?
• Backwards compatible, but that is only part of it
• Same look and feel of MPI, maintain the learning curve
• Enabe code reuse for existing codes

The State of MPI - Seminar Plasma-PEPSC



MPI Sessions 

Instead of MPI_Init / MPI_COMM_WORLD:

1. Get local access to the MPI library
Get a Session Handle

2. Query the underlying run-time system
Get a “set” of processes

3. Determine the processes you want
Create an MPI_Group

4. Create a communicator with just those processes
Create an MPI_Comm

What does this do?
• Deliver runtime information of (changing) information to the MPI library
• Enables the ability to provide resource isolation between sessions
• Eliminate the need for a static resource MPI_COMM_WORLD

It’s a starting point!
The State of MPI - Seminar Plasma-PEPSC

MPI_Session

Set of processes

MPI_Group

MPI_Comm



Where Are We?

MPI 4.0 was published 2.5 years ago
(in the middle of Corona)
- Solution for “Big Count” operations
- Partitioned Communication
- Persistent Collectives
- Improved Error Handling
- Topology Solutions
- New init options via MPI Sessions
- And much more …

MPI 4.1 was published November 2023
- Clean-Up & terminology adjustments
- Automatic buffer for MPI_Bsend
- Support for different memory kinds, including GPU memory

The State of MPI - Seminar Plasma-PEPSC



What’s New in MPI 4.1? Updates

MPI 4.1 is a minor update to MPI, mostly bug fixes and clarifications

Many Clarifications
• Terms and behavior of routines in some corner cases. 
• See the change log for specifics.

Errata items
• Revert change to MPI_CART_COORDS made by mistake in MPI 4.0
• MPI_STATUS_SET_ELEMENTS for large count added

Deprecated (MPI features that might be removed in a later version)
• Some obscure functions deprecated (MPI_TYPE_SIZE_X and such)
• MPI_HOST (attribute key) deprecated
• mpif.h deprecated (Fortran programmers should use the mpi or mpi_f08 module)

The State of MPI - Seminar Plasma-PEPSC



What’s New in MPI 4.1? New Features

Added functions to query/set status fields
• E.g., MPI_STATUS_GET_SOURCE. Can still use direct access.

Improved Bsend support
• Automatic, “unlimited” buffering for BSEND added
• New buffer attach/detach for communicators and sessions. 
• New routines to complete communication (e.g., MPI_COMM_FLUSH_BUFFER)

Added functions to query status on a request
• E.g., MPI_REQUEST_GET_STATUS_ANY 
• Without freeing the request

Additions to HW Topologies
• Added MPI_COMM_TYPE_RESOURCE_GUIDED for MPI_COMM_SPLIT_TYPE
• Added MPI_GET_HW_RESOURCE_INFO

Added routines to remove error codes, classes, and strings
• For those added by the user

The State of MPI - Seminar Plasma-PEPSC



Use MPI info to provide users with a portable solution to:
1. Detect whether accelerator memory is supported by the MPI library
2. Request support for accelerator memory from the MPI library (when using Sessions)
3. Constrain usage of accelerator memory to specific communicators, windows, etc.

mpi_request_memory_alloc_kind
• Request support for memory allocator kind from the MPI library

mpi_assert_memory_alloc_kind
• Assert memory kinds used by the application on the given MPI object

mpi_memory_alloc_kind
• Memory kinds supported by the MPI library

New in MPI 4.1: Allocator Kind Info

Slide by Jim Dinan, NVIDIA
The State of MPI - Seminar Plasma-PEPSC



Use MPI info to provide users with a portable solution to:
1. Detect whether accelerator memory is supported by the MPI library
2. Request support for accelerator memory from the MPI library (when using Sessions)
3. Constrain usage of accelerator memory to specific communicators, windows, etc.

mpi_request_memory_alloc_kind
• Request support for memory allocator kind from the MPI library

mpi_assert_memory_alloc_kind
• Assert memory kinds used by the application on the given MPI object

mpi_memory_alloc_kind
• Memory kinds supported by the MPI library

New in MPI 4.1: Allocator Kind Info

Slide by Jim Dinan, NVIDIA
The State of MPI - Seminar Plasma-PEPSC



Request Support for CUDA Allocated Memory

bool cuda_aware = false;
int len = MPI_MAX_INFO_VAL, flag = 0;
char *val = malloc(MPI_MAX_INFO_VAL);
MPI_Info info;

MPI_Info_create(&info);
MPI_Info_set(info, “mpi_memory_alloc_kinds”, “cuda:device”);
MPI_Session_init(info, MPI_ERRORS_ARE_FATAL, &session);
MPI_Info_free(&info);

MPI_Session_get_info(session, &info);
MPI_Info_get_string(info, “mpi_memory_alloc_kinds”, &len, val, &flag);

// Check mpi_memory_alloc_kind for “cuda:device”
while (flag && (kind = strsep(&val, ",")) != NULL) {

if (strcasecmp(kind, "cuda:device") == 0) {
cuda_aware = true;
break;

}
}

Slides by Jim Dinan, NVIDIA
The State of MPI - Seminar Plasma-PEPSC



Where Are We?

MPI 4.0 was published 2 years ago
(in the middle of Corona)
- Solution for “Big Count” operations
- Partitioned Communication
- Persistent Collectives
- Improved Error Handling
- Topology Solutions
- New init options via MPI Sessions
- And much more …

MPI 4.1 planned for November 2023
- Clean-Up & terminology adjustments
- Automatic buffer for MPI_Bsend
- Support for different memory kinds, including GPU memory

Possible MPI 4.2 planned soon
- Efforts to define an MPI ABI are fairly advanced

The State of MPI - Seminar Plasma-PEPSC



Moving Towards MPI 5.0

Building on the new concepts of MPI 4.0/4.1
• Partitioned Communication, MPI Sessions, Memory kinds
• Increased presence of persistency

New features that are under discussion
• Better support for accelerated architectures

The State of MPI - Seminar Plasma-PEPSC



Partitioned Communication for Thread Support

Extensions to basic concept
• Guarantees for readiness at receiver
• Different send type options
• Collective versions
• Do non persistent version make sense?

The State of MPI - Seminar Plasma-PEPSC

MPI_Psend_init(..., &request);
for (...) {

MPI_Start(&request);
#pragma omp parallel
{

kernel(..., request);
}
MPI_Wait(&request);

}
MPI_Request_free(&request);

Thread:

kernel(..., MPI_Request request) 
{

int i = my_partition[my_id];
/* Compute and fill partition i then mark ready: */
MPI_Pready(i, request);

}



Partitioned Communication for Thread Support

Extensions to basic concept
• Guarantees for readiness at receiver
• Different send type options
• Collective versions
• Do non persistent version make sense?

The State of MPI - Seminar Plasma-PEPSC

MPI_Psend_init(..., &request);
for (...) {

MPI_Start(&request);
#pragma omp parallel
{

kernel(..., request);
}
MPI_Wait(&request);

}
MPI_Request_free(&request);

Thread:

kernel(..., MPI_Request request) 
{

int i = my_partition[my_id];
/* Compute and fill partition i then mark ready: */
MPI_Pready(i, request);

}

Extensions to accelerators
• Heavy weight MPI on host process
• Light-weight triggers on accelerators (without OS)
• Requires translation of requests

Requires GPU bindings for MPI



Partitioned Communication for Thread Support

Extensions to basic concept
• Guarantees for readiness at receiver
• Different send type options
• Collective versions
• Do non persistent version make sense?

The State of MPI - Seminar Plasma-PEPSC

Extensions to accelerators
• Heavy weight MPI on host process
• Light-weight triggers on accelerators (without OS)
• Requires translation of requests

Requires GPU bindings for MPI

MPI_Psend_init(..., &request);
for (...) {

MPI_Start(&request);
#pragma omp target
{

GPU_kernel(..., request);
}
MPI_Wait(&request);

}
MPI_Request_free(&request);

Accelerator:

kernel(..., MPI_GPU_Request request) 
{

int i = my_partition[my_id];
/* Compute and fill partition i then mark ready: */
MPI_Pready(i, request);

}



Accelerator Bindings for MPI Partitioned APIs

CUDA and SYCL Language Bindings Under Exploration
• Consequence of moving partitioned triggers to GPU
• Opens many cans of worms (What is a process? Which bindings? …)

The State of MPI - Seminar Plasma-PEPSC

int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, 
MPI_Info info,MPI_Request *request)

int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm, 
MPI_Info info, MPI_Request *request)

int MPI_[start,wait][_all](...)

__device__ int MPI_Pready(int partition, MPI_Request request) 

__device__ int MPI_Pready_range(int partition_low, int partition_high, MPI_Request request) 

__device__ int MPI_Pready_list(int length, const int array_of_partitions[], MPI_Request
request) 

__device__ int MPI_Parrived(MPI_Request request, int partition, int *flag) 

Keep host only
Add device bindings



Separation of Bindings from MPI Concepts

New user communities use new/other languages
• C++, Python, Java, …
• MPI should be available to them, in their „native usage pattern“, not as C wrappers

One idea
• Split the MPI standard into semantics and bindings
• One central semantics document
• One document per language to describe the mapping

Side effects
• Would make us think more about the

details of the semantics of the standard

• Question: what does this mean for scripted languages? 

Early discussions / New working group

The State of MPI - Seminar Plasma-PEPSC



Moving Towards MPI 5.0

Building on the new concepts of MPI 4.0/4.1
• Partitioned Communication, MPI Sessions, Memory kinds
• Increased presence of persistency

New features that are (or IMHO should be) under discussion
• Better support for accelerated architectures
• New language support to enable new communities
• Better integration with task-based runtimes

The State of MPI - Seminar Plasma-PEPSC



Proposal for Thread Continuations
Idea: Treat the completion of an MPI operation as continuation of some activity

Ability to couple with OpenMP events and dependencies

“Callback-based completion notification using MPI Continuations,”
Joseph Schuchart, Christoph Niethammer, José Gracia, George Bosilca, Parallel Computing, 2021.

“MPI Detach - Asynchronous Local Completion,”
Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Müller, Torsten Kuhlen. EuroMPI ‘20.

1

2

3

4

The State of MPI - Seminar Plasma-PEPSC



Moving Towards MPI 5.0

Building on the new concepts of MPI 4.0/4.1
• Partitioned Communication, MPI Sessions, Memory kinds
• Increased presence of persistency

New features that are (or IMHO should be) under discussion
• Better support for accelerated architectures
• New language support to enable new communities
• Better integration with task-based runtimes
• Improved tool support

The State of MPI - Seminar Plasma-PEPSC



Improving the Profiling Interface: QMPI

MPI supports the tools via the MPI profiling interface
• Ability to intercept any MPI call, including parameters
• Redirection of MPI calls for new functionality
• Used by many tools

Limitations
• Single tool and user drive
• Usage in Fortran/non-C problematic

Proposal to revamp the interface
• Tools as dynamic wrappers
• Language independent
• Chains of multiple tools

Challenge: Sessions (!)

The State of MPI - Seminar Plasma-PEPSC

Runtime Tuner

Application
MPI

Lib.

User Tool

System Monitor

Perf.
Database

MPI

API

PMPI

API

tune

Comm.

Optimization

Elis et al., EuroMPI19



Moving Towards MPI 5.0

Building on the new concepts of MPI 4.0/4.1
• Partitioned Communication, MPI Sessions, Memory kinds
• Increased presence of persistency

New features that are (or IMHO should be) under discussion
• Better support for accelerated architectures
• New language support to enable new communities
• Better integration with task-based runtimes
• Improved tool support
• Malleability

The State of MPI - Seminar Plasma-PEPSC



Malleability / Dynamic Execution

Support for more flexible HPC environments
• Applications to adjust to their sweetspot
• Systems to adjust based on resources
• Accelerated systems with complex nodes
• Communication with disaggregated accelerators 
• Complex workflows

New user communities
• Going beyond typical application-driven messaging 
• Communicatipon in system software
• Commercial applications beyond HPC (“faster sockets”)

How to change MPI to support malleability?
• Fundamental change of abstraction away from MPI_COMM_WORLD
• Need interactions with the runtime system
• Maintain basic “look & feel” of MPI

The State of MPI - Seminar Plasma-PEPSC

EU Grant #956560
BMBF #16HPC039K
REGALE

EU Grant #955606
BMBF #16HPC014
DEEP-SEA

Time-X #955701
BMBF #16HPC050
TIME-X



Building on top of MPI Sessions

Sessions can provide the needed abstractions
• Transitive closure around all resources in a set of sessions à “MPI bubble”
• Within a bubble normal MPI rules apply
• BUT: bubbles can come and go, interaction with the runtime

Option 1: MPI Session form ”MPI Bubbles”
• “All resources that are derived from a set of resources across a set of MPI processes”
• Implicitly derived from MPI application using sessions
• Within an MPI bubble, normal MPI
• Can invalidate and recreate new bubble,

while maintaining state

Option 2: Process sets can change
• Ability for the runtime to “tell” something to the application
• Enable process sets ot grow or shrink
• Names are local to MPI Sessions
• Agreement protocol/versioning to agree on new set

The State of MPI - Seminar Plasma-PEPSC



Some of the Open Issues

Resource change detection APIs
• Do we want/need notification vs. Polling?
• How to version process sets?
• How to avoid full comparisons of all process sets?

Resource description APIs
• Which resources should be requested?
• Which resources are available?
• Should this be part of MPI or external?

Handshake negotiation APIs
• How to request a change?
• How to inform applications of a change?
• How to capture agreement?
• Central manager or collective?

Connection to fault tolerance proposals ?!?!

The State of MPI - Seminar Plasma-PEPSC



Moving Towards MPI 5.0

Building on the new concepts of MPI 4.0/4.1
• Partitioned Communication, MPI Sessions, Memory kinds
• Increased presence of persistency

New features that are (or IMHO should be) under discussion
• Better support for accelerated architectures
• New language support to enable new communities
• Better integration with task-based runtimes
• Improved tool support
• Malleability
• Fault Tolerance

The State of MPI - Seminar Plasma-PEPSC



Fault Tolerance for MPI

Initial approaches failed
• Too heavy weight
• Too much oriented to one model
• …

Nevertheless, interest is large 
• Continued work in the working group
• Goal: minimal building blocks (many concepts stay, though)
• First step: better error handling in MPI 4.0

Support for several FT models
• Fine grained à ULFM (for new apps)
• Coarse grained à ReInit (to support existing C/R-based apps)
• Session-based

The State of MPI - Seminar Plasma-PEPSC



Coarse-grained Recovery (Reinit)

User s
ubmits

 jo
b

Progra
m begin

s

Main
 lo

op begin
s

End of it
erat

ion 1

Resources allocated

End of it
erat

ion 2

Program data initialized

Proce
ss 

fai
lure

MPI state is created, e.g., 
communicators

MPI is setup

Checkpoint stored

Reinit
Failure 

Recovery
Program checkpoint loaded

Recovery time

Time

Checkpoint stored

Program checkpoint loaded
Traditional

CPR

Recovery time

Slide: Ignacio Laguna, LLNL
The State of MPI - Seminar Plasma-PEPSC



Fine-grained Fault Tolerance

Slide: Aurelien Bouteiller, UTK
The State of MPI - Seminar Plasma-PEPSC



Sessions Can Support Isolation of Failed Processes

Simple support for “Shrinking Recovery”
• Needs functionality to “pop” a bubble
• Supports cleanup, as resources are properly isolated

Session
App 1

Bubble
Process 1

Session
App 2

Process 2

Session
App 3

Process 3

Session
App 1

Old Bubble
Process 1

Session
App 1

Process 2

Session
App 1

Process 3

Session
App 2

Session
App 1

New Bubble

Session
App 2

Session
App 1

Bubble
Process 1

Process 2

The State of MPI - Seminar Plasma-PEPSC



Sessions Can Support Restart of Resources

Session
App 2

Session
App 1

New Bubble

Session
App 3‘

Process 3

Session
App 2

Session
App 1

Bubble
Process 1

Process 2

Session
App 3

Process 3

Session
App 1

Process 1

Session
App 2

Process 2

Session
App 3

Process 3

Session
App 1

Old Bubble
Process 1

Session
App 2

Process 2

Session
App 3

Process 3

Bubble

Simpe support for “Non-Shrinking Recovery”
• Preferred/required by most applications à default case
• Needs negotiation interface with runtime

The State of MPI - Seminar Plasma-PEPSC



The MPI Standard and the MPI Forum

The State of MPI - Seminar Plasma-PEPSC

Where we are?
• MPI 4.0 provides powerful new features
• MPI 4.1 offers cleanup and adds minor features
• Strong push and support for an ABI standardization

What is next?
• Many research topics on optimizing new features
• New concepts in MPI 4.1 drive new innovations

• New support for accelerated systems
• New language and tooling support
• Drive towards malleability

• Many more open issues
How can you participate?

• The MPI forum is an open organization
• Join a WG, participate in meetings
• Introduce new concepts so all can benefit



It takes a team, or rather teams …

The TUM CAPS Team

The State of MPI - Seminar Plasma-PEPSC

The MPI Forum



The MPI Standard and the MPI Forum

Join us:
http://www.mpi-forum.org/

The State of MPI - Seminar Plasma-PEPSC

Where we are?
• MPI 4.0 provides powerful new features
• MPI 4.1 offers cleanup and adds minor features
• Strong push and support for an ABI standardization

What is next?
• Many research topics on optimizing new features
• New concepts in MPI 4.1 drive new innovations

• New support for accelerated systems
• New language and tooling support
• Drive towards malleability

• Many more open issues
How can you participate?

• The MPI forum is an open organization
• Join a WG, participate in meetings
• Introduce new concepts so all can benefit

http://www.mpi-forum.org/

